
#### WCu



### Applications industrielles

Electrodes et outils pour électroérosion.

### Composition chimique en %

|      | -     |        |      |  |  |
|------|-------|--------|------|--|--|
|      | Cu    | Autres | W    |  |  |
| Mini | -     | -      | -    |  |  |
| Maxi | 25,00 | 1,00   | Base |  |  |

## Propriétés physiques à 20 °C

| Densité                                    | 14,8                      |
|--------------------------------------------|---------------------------|
| Module d'élasticité E                      | 250 000 N/mm <sup>2</sup> |
| Coefficient de poisson V                   | 0,28                      |
| Coefficient moyen de dilatation en m/m* °C | 9,6                       |
| Conductivité thermique en W (m*k)          | 400                       |
| Résistivité électrique en micro-Ohms*cm    | 4,3                       |
| Conductivité électrique                    | 40 % IACS                 |
| Amagnétique                                |                           |

#### Etat de livraison

Matériau livré à l'état traité ≤ 240HV.

### Aptitudes d'emploi

Alliage composite tungstène cuivre fritté issu de la métallurgie des poudres.

Excellente résistance à l'érosion à l'arc.

Bonne aptitude à l'usinage.

Bonne tenue à la corrosion atmosphérique.

Faible dilatation thermique.

Bonne conductivité thermique.



Comparées à des électrodes en matériaux plus conventionnels, ces électrodes apportent de nombreux avantages :

- résistance à l'usure: du fait du point de fusion extrêmement élevé du tungstène (3410 °C), la durée de vie de l'électrode est beaucoup plus longue que celle en cuivre ou en graphite, notamment pour les électrodes de petites sections utilisées dans des conditions sévères.
- précision de forme : les arêtes vives ont tendance à concentrer les arcs électriques. La faible usure du LAKAL a une forte incidence sur le maintien de ces arêtes et permet donc une précision dimensionnelle de la pièce usinée nettement supérieure.
- qualité de l'état de surface : la granulométrie fine et régulière et le très faible taux de porosité du LAKAL, permettent l'obtention d'un état de surface de qualité, notamment dans l'usinage "en plongée".
- bonne usinabilité: son module d'élasticité élevé confère au LAKAL sa rigidité et lui permet d'avoir un excellent comportement à l'usinage. Contrairement au cuivre, il ne gauchit pas et la formation de bavures est négligeable. Par rapport au graphite il ne s'ébrèche pas. La précision des arêtes vives est meilleure. Cette caractéristique permet aussi la réalisation d'électrodes fines et de grandes longueurs.
- hygiène, environnement et conditions de travail: le LAKAL ne nécessite pas d'installation particulière pour son usinage, contrairement au graphite pour lequel un système d'aspiration des poussières doit être mis en place pour pallier la pollution de l'air et les sols glissants.
- usure: le tungstène-cuivre s'impose aujourd'hui comme la seule solution viable pour l'usinage du carbure de tungstène.
  Le graphite et le cuivre s'usent beaucoup trop vite lors de l'électro-érosion.

# Sections disponibles en mm (longueur 175 mm ±1)

| E-SHOP |
|--------|
|--------|

| Tol. Ø k9     | 1         | 1,5       | 2         | 2,5       | 3         | 3,5       | 4         | 5         | 6         |           |           |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Code Lugand   | 4820010   | 4820 015  | 48 20 020 | 48 20 025 | 48 20 030 | 48 20 035 | 48 20 040 | 4820050   | 4820 060  |           |           |
| Poids g       | 2         | 4,5       | 8         | 13        | 18        | 25        | 33        | 57        | 73        |           |           |
| Tol. Ø k13    | 8         | 10        | 12        | 14        | 16        | 20        | 25        | 30        | 35        | 40        | 50        |
| Code Lugand   | 48 20 080 | 4820100   | 48 20 112 | 4820114   | 48 20 116 | 4820120   | 48 20 125 | 4820130   | 48 20 135 | 48 20 140 | 48 20 150 |
| Poids g       | 130       | 203       | 293       | 420       | 520       | 814       | 1271      | 1830      | 2492      | 3254      | 5085      |
| <br>Dimension | 8         | 10        | 12        | 15        | 20        | 25        | 30        | 40        | 50        |           |           |
| Code Lugand   | 48 20 308 | 4820310   | 48 20 312 | 4820315   | 48 20 320 | 48 20 325 | 48 20 330 | 48 20 340 | 48 20 350 |           |           |
| Poids g       | 166       | 260       | 373       | 583       | 1036      | 1619      | 2330      | 4150      | 6475      |           |           |
| Dimension     | 3x75      | 6x75      | 8x75      | 10x75     | 15x75     | 20x75     |           |           |           |           |           |
| Code Lugand   | 48 20 503 | 48 20 506 | 48 20 508 | 4820510   | 48 20 515 | 48 20 520 |           |           |           |           |           |
| Poids g       | 583       | 1166      | 1554      | 1973      | 2920      | 3885      |           |           |           |           |           |